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Abstract— As robots begin to collaborate with people in
real life, their applicability and practicality are continuously
increasing. To reliably employ robots nearby, safety needs
to be rigorously ensured. In addition to collision prevention
algorithms, studies are being actively conducted on collision
handling methods. Momentum Observer (MOB) was developed
to estimate disturbance torque without using joint acceleration.
However, the estimated disturbance from MOB contains not
only the applied external torque but also model uncertainty
such as friction and modeling error due to imprecise system
identification. Our proposed method handles this problem by
learning the model uncertainty with Long Short-Term Memory
(LSTM) and thereby estimates the purely applied external
torque with only proprioceptive sensors. The proposed method
can be applied even when the information on the robot model is
not available. The experiments using a real robot show that the
external torque can be estimated and collisions can be detected
accordingly even in a limited situation where a precise dynamics
model and friction model are not available.

I. INTRODUCTION

Over the past few decades, studies have been actively
conducted on physical human-robot interaction (pHRI) in
line with efforts to expand the use of robots in real life. For
robots to be able to physically interact with humans, one of
the most important issues is safety. Unlike industrial robots
in a factory, humans will share the social robot’s workspace
and there could be the unexpected collisions between robots
and people. This makes it important to find safety measures
to prevent or cope with unexpected collision.

One way to ensure the safety of humans in the robot
workspace is to do so in advance during the pre-collision
phase. In this phase, the robot needs information about
the nearby environment to plan a collision-free trajectory.
However, this procedure requires additional sensors such as
vision sensors and real-time computation for recognition.
Moreover, any abrupt changes in the environment, such as
human motion, make such prevention unreliable. Therefore,
to ensure safety, in addition to a collision prevention algo-
rithm, collision handling procedures should be prepared. In
[1], Haddadin et al. defined the collision event pipeline to
ensure safety during the collision phase; detection, isolation,
identification, classification, reaction. Among these steps,
this paper will mainly deal with the collision detection
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step, which determines whether the collision occurred, and
the collision identification step, which estimates the applied
external force/torque.

Other than using direct skin sensors[2], [3], an indirect
way to detect unexpected robot collisions is to estimate
the disturbance using a dynamics model of the robot. If
the joint torque is available from a joint torque sensor
(JTS), external torque can be obtained by subtracting the
dynamics torque occurred by its motion from the measured
joint torque. However, joint angular acceleration must be
measured or estimated to calculate the dynamics torque.
Since joint angular acceleration attained from the numerical
differentiation of the joint angle is too noisy to use, in [4], the
IMU signal is fused for each joint to estimate joint velocity
and acceleration, and then it is used to estimate external
torque.

To avoid using the joint acceleration signal, a velocity
observer [5], energy observer [6], and MOB [7], [8], [9]
using joint velocity and the identified system model were
introduced. MOB-based methods which do not use JTS [8],
[9] have advantages, in that the low-pass-filtered disturbance
can be estimated using only proprioceptive sensors, such as
an encoder and motor current sensor. However, the estimated
disturbance includes various model uncertainty factors, such
as modeling error due to imprecise system identification,
friction, the elasticity of robot joints[10], and control delay
[11] as well as the applied external torque. Among these
uncertainty factors, [8] and [9] used a friction model to offset
the effect of friction torque, but modeling the friction is
difficult and the other uncertainty effects remain unstruc-
tured. As a result, it is difficult to differentiate between
the pure externally applied torque and unstructured model
uncertainties.

To take this model uncertainty into account, a threshold
which is higher than the maximum model uncertainty can be
used. However, the high threshold decreases the sensitivity
of collision detection. Thus, time-varying dynamic thresh-
old methods were suggested which can estimate threshold
parameters online recursively by the least square method or
gradient correction and determine the threshold accordingly
[12], [13]. However, both methods require a joint accelera-
tion signal.

To differentiate modeling error torque and external torque,
[14], [15] introduced a high pass filter and bandwidth
filter to filter out modeling error torque, assuming that
the modeling error has slow dynamics, thus the modeling
error torque is limited to low frequency. However, setting
a cut-off frequency is heuristic, and collisions with slowly



increasing external forces would not be detected. A novel
model-adaptive algorithm is also suggested in [16] using a
regressor-based model adaptive observer, which compares
the estimated joint torques with measured torques. This
method shows high sensitivity but needs IMU to estimate
joint acceleration and excludes the effect of joint friction by
using JTS.

On the other side, recent works that use a deep learning
approach for collision detection are superior when handling
the above-mentioned model uncertainty. Data-driven deep
learning approaches can detect collisions either by learning
the end-to-end relationship of the collision [17] or by estimat-
ing residual [18], [19], and both approaches consider model
uncertainty by itself. However, implementing an end-to-end
collision detection algorithm requires collecting collision
data, which is dangerous and expensive, and once trained,
the sensitivity of the trained network cannot be adjusted.
In contrast, the residual-based algorithms only require free-
motion data which is relatively easy to collect.

In this paper, a novel MOB-based collision detection
algorithm using LSTM is introduced. The LSTM is adopted
to learn model uncertainty during free-motion and the ex-
ternal torque is estimated from the residual between the
MOB and LSTM, as shown in Fig 1. The contribution of
the proposed algorithm is as follows. First, it can detect
collisions by estimating external torques when the modeling
error and friction exist. The LSTM can handle various types
of modeling error, even when there is no model on the
dynamics of the robot at all. Second, the proposed method
does not require any additional expensive sensors, such as
JTS, 6-axis force/torque sensor, and IMU to estimate the
external torque. Lastly, the proposed method is validated with
a real robot showing that the method can detect collisions
and estimate external torque under various types of modeling
error and friction. Since the proposed method neither requires
precise system identification of dynamics parameters and
friction model nor any additional exteroceptive sensors, it
can be generally applied to any robots with proprioceptive
sensors.

The remainder of this paper is organized as follows. In
Section II, the mathematical derivation to estimate distur-
bance torque is formulated and the momentum observer is
explained. In Section III, the proposing algorithm where
LSTM is used to learn model uncertainty is presented. In
Section IV, it is validated that our proposed method can
estimate external torque and detect collisions properly in the
presence of modeling error and friction, using a 2 DOF test
platform robot. Lastly, this paper summaries the proposed
method and results, and suggests future work in Section V.

II. DISTURBANCE TORQUE ESTIMATION

A. Problem Formulation
The fundamental rigid body dynamics of a n degrees of

freedom (DOF) robot can be formulated as

M(q)q̈+C(q, q̇)q̇+g(q) = τm− τ f + τext , (1)

where M(q) ∈ Rn×n, C(q, q̇) ∈ Rn, g(q) ∈ Rn are the inertia
matrix, the centripetal and Coriolis matrix, the gravitational

Fig. 1. Block diagram of the proposed framework. LSTM learns model
uncertainty and the external torque is estimated from the residual between
MOB and LSTM.

torque, q, q̇, q̈∈Rn are the joint position, the angular velocity,
the angular acceleration, τm ∈Rn is the motor torque, τ f ∈Rn

is the friction torque and τext ∈ Rn is the external torque,
respectively. The dynamics parameters such as M(q), C(q, q̇),
g(q) should be identified, but modeling error is inevitable.
Therefore, the estimated rigid body dynamics of the robot
can be represented as

M̂(q)q̈+Ĉ(q, q̇)q̇+ ĝ(q) = τm− τ f − τe + τext , (2)

where hat ( ·̂ ) indicates estimated values and τe = M(q)q̈+
C(q, q̇)q̇+g(q)− (M̂(q)q̈+Ĉ(q, q̇)q̇+ ĝ(q)) is the modeling
error torque.

The model uncertainty torque τuncrt and disturbance torque
τdist are defined as follows.

τu :=− τ f − τe ∈ Rn, (3)
τdist :=− τ f − τe + τext (4)

= τuncrt + τext ∈ Rn. (5)

Then, the disturbance torque can be calculated directly from
Eq.(2) and the definition (4) as below.

τdist = M̂(q)q̈+Ĉ(q, q̇)q̇+ ĝ(q)− τm. (6)

B. Momentum Observer

To avoid using noisy q̈ when calculating τdist , a classical
disturbance observer using the generalized momentum p of
the robot was introduced in [7].

p = M̂(q)q̇. (7)

Its derivative combined with Eq.(2) is

ṗ = τm + τdist +ĈT (q, q̇)q̇− ĝ(q) (8)

= τm + τdist − β̂ (q, q̇), (9)

where β̂ (q, q̇) =−ĈT (q, q̇)q̇+ ĝ(q) is defined for the simpli-
fication.

To estimate disturbance torque, a residual vector r ∈ Rn

and its dynamics are defined as below.

ṙ = K0(ṗ− ˙̂p) (10)
˙̂p = τm− β̂ (q, q̇)+ r, (11)



Fig. 2. Block diagram of the proposed framework during training
under free-motion. LSTM is trained to learn the low-pass filtered model
uncertainty τ̃uncrt with time-series input xLST M .

where K0 = diag{k0,i} > 0 is the positive diagonal gain
matrix and ˙̂p is the derivative of the estimated momentum.

Integrating (10) results in

r = K0

{
p(t)− p(0)−

∫ t

0
(τm− β̂ (q, q̇)+ r)dt

}
. (12)

Substituting (9) and (11) to (10) derives the relation between
r and τdist as

ṙ = K0(τdist − r). (13)

Laplace transforming of the Eq.(13) in each joint leads to

ri(s)
τdist,i(s)

=
k0,i

s+ k0,i
(i = 1,2, ...,n), (14)

which means that the MOB residual vector r is the first order
low-pass filtered disturbance torque τdist .

Consequently, the output of the MOB (τMOB = r) contains
not only external torque τext but also torques derived from
model uncertainty τuncrt .

III. MODEL UNCERTAINTY LEARNING LSTM

A. Uncertainty Learning Using LSTM Under Free-Motion

When executing free-motion, there is no external torque
τext . Therefore, the output value of the MOB is low-pass
filtered model uncertainty torque τ̃uncrt which contains low-
pass filtered friction τ̃ f and modeling error τ̃e, as in Fig. 2 and
Eq.(3). Here, tilde (·̃) denotes low-pass filtered value. LSTM
learns these model uncertainties with the time-series data
input. Although some may argue that using a simple fully
connected network that only uses current time data x(k) as
an input to infer current model uncertainty is enough, time-
series data is used with LSTM since it is well-known that
friction shows hysteresis behavior, such that the friction is
dependent on the history of the states. Additionally, because
the output of the MOB is the low-pass-filtered value of τdist
as shown in Eq.(14), there is a time delay between current
disturbance torque and MOB output. Thus, using time-series
data as an input is appropriate for inferring MOB output
τMOB.

Fig. 3. Structure of Many-to-one LSTM. Time-series proprioceptive
data are fed into LSTM and the LSTM estimates a torque due to model
uncertainty.

B. Input Selection and LSTM Structure

The utilized many-to-one LSTM has 1 hidden layer and
20 hidden units for each hidden state h and cell state c,
as in Fig.3. The LSTM takes time-series data as input and
learns the output value of the MOB under free-motion,
which is low-pass filtered model uncertainty τ̃uncrt . The
low-pass filtered model uncertainty torque consists of low-
pass filtered friction τ̃ f riction and modeling error τ̃e. When
the torque from friction τ f is assumed to be a friction
under the sliding region, the low-pass filtered friction torque
τ̃ f riction can be expressed with a function of q̇ and its
histories. Likewise, since the torque due to modeling error
τe =M(q)q̈+C(q, q̇)q̇+g(q)−(M̂(q)q̈+Ĉ(q, q̇)q̇+ ĝ(q)) is a
function of q, q̇, q̈, the low-pass filtered modeling error torque
τ̃e can be expressed with time-series data of q, q̇, q̈. However,
as mentioned in Section II-B, since q̈ may not be measured,
the joint velocity of the previous time step q̇(k− 1) along
with current joint velocity q̇(k) can be used where k is a
discretized time variable. Thus, τ̃uncrt can be expressed using
time-series input variable xuncrt as follows.

τ̃uncrt =−τ̃e− τ̃ f (15)
= f (xuncrt) (16)

where f is a true mapping from input to low-pass filtered
model uncertainty and xuncrt is a time-series input as follows.

xuncrt = [x(k−n+1), ... , x(k−1), x(k)], (17)

where one time step data x(t) is organized as

x(k) = [q(k), q̇(k), q̇(k−1)]. (18)

Thus, the LSTM network fθ is trained to learn the true
mapping function f and the input of the LSTM xLST M is
chosen to be same as xuncrt where a time interval between
the data is dt = 0.01s and the size of data buffer sequence
is n = 100.

C. Extreme Modeling Error Case

The modeling error torque τe can be extreme when there is
not model information at all, thereby assuming that M̂(q) =
0n×n, Ĉ(q, q̇) = 0n×n, ĝ(q) = 0n×1. In this case, Eqs.(10) and
(11) can be modified as

ṙ =−K0 ˙̂p (19)
˙̂p = τm + r, (20)



Fig. 4. Torque-controlled multi-functional test flatform (MOCCA).
MOCCA can be assembled with various combinations of kinematic struc-
tures, the number of joints, joint stiffness, and so on. In the presented
experiments, MOCCA is set vertically with two joints.

which further modifies Eq.(14) as

ri(s)
τm,i(s)

=
k0,i

s+ k0,i
(i = 1,2, ...,n). (21)

Therefore, when there is no model at all, the output of
MOB is equivalent to the low-pass-filtered value of motor
torque. Thus, in this extreme case, the LSTM learns the low-
pass-filtered value of motor torque.

D. External Torque Estimation and Collision Detection

After the LSTM network fθ is trained updating the pa-
rameters θ under free-motion data, LSTM predicts the low-
pass-filtered model uncertainty torque under the current state
xLST M as below.

τLST M = fθ (xLST M). (22)

Thus, as shown in Fig. 1, the external torque can be estimated
by subtracting LSTM prediction τLST M from the MOB output
τMOB. When the estimated external torque τ̂ext exceeds the
threshold which is determined by the maximum regression
error in the validation set, the algorithm infers that a collision
occurred.

IV. EXPERIMENTAL VALIDATION

A. Experiment Setup

The proposed method was validated using a torque-
controlled multi-functional test platform MOCCA (MOdular
Configuration Changeable Actuator test platform) [20]. The
MOCCA was designed to change various physical variables
such as kinematic structure, motor drive shaft inertia, joint
stiffness, and so on. Among the various kinematic structures
which MOCCA can be assembled to, a 2-DOF vertical
structure was adopted as shown in Fig. 4 to clearly show
the effect of modeling error, which is evident in gravitational
torque g(q) even in a static pose. The length of each link is
0.3m and the total mass is 18.111kg. A joint torque sensor
is embedded but only used to compare the applied external
torque with the proposed method. The robot was controlled
using joint Proportional–Derivative (PD) control in 1000 hz.

TABLE I
LSTM REGRESSION ERROR ACCORDING TO THE TYPE OF MODEL ERROR

IN THE FREE-MOTION TEST SET.

Type of model error joint # L1 norm
(Nm)

L2 norm
(Nm)

Variance
(N2m2)

Overall Region
1 0.402 0.661 0.435W/O modeling error 2 0.262 0.369 0.136
1 0.401 0.687 0.468Mass error 2 0.256 0.365 0.132
1 0.392 0.680 0.458COM error 2 0.253 0.355 0.126
1 0.415 0.681 0.464Mass + COM error 2 0.258 0.368 0.134
1 0.409 0.683 0.466W/O model 2 0.259 0.376 0.141

The experiment was designed to show that the proposed
method can be applied to various types of modeling error,
even the case when there is no model. Among the dy-
namics parameters (mass, inertia, Center of Mass (COM)),
inertia showed a minor effect on modeling error torque τe.
Thus, mass (m1,m2) and the position of COM (pc1, pc2)
are perturbed from our best-estimated parameters (m1 =
8.191kg, m2 = 9.920kg, pc1 = [0.12079,0.0,0.0]m, pc2 =
[0.16078,0.0,0.0]m) by design as follows.
• Without modeling error: Our best-estimated parameters
• Mass error: Mass of each link is reduced to 50%
• COM error: Position of COM is set 50% closer to the

axis in each direction
• Mass+COM error: Mass and position are perturbed

simultaneously
• Without model: Mass of the robot is set to 0kg.

B. Data Collection and Training

To collect the data to train LSTM, each MOB using
the perturbed dynamic parameters described in the previous
section was activated with K0 = diag{20,20} simultaneously
to estimate corresponding modeling uncertainty during free-
motion. Free-motion consists of quintic-splined trajectories
from the initial joint position to the target joint position
which is randomly chosen within a joint position limit of [-
180, 180]◦ and maximum average joint speed of [20, 50]◦/s.
LSTM input q(k), q̇(k), q̇(k−1) and the MOB values τMOB
for each perturbed model are collected with 100hz for 90
minutes of free-motion. 70% of the data are used for training,
15% for validation, and 15% for testing. A batch size of
1000, the number of epochs 500, Adam optimizer with
β1 = 0.9, β2 = 0.999 and, learning rate lr = 0.001 are used
for optimization. Here, note that one LSTM is trained for
each perturbed model.

C. Validation of Model Uncertainty Learning

The trained LSTM network was compared with the MOB
under the free-motion test data set. Since the LSTM is trained
to learn the model uncertainty and the output of the MOB
is also model uncertainty under free-motion as mentioned in
Section III-A, the output of the LSTM should be similar to
the value of MOB when properly trained.



Fig. 5. Estimated disturbance torque by MOB(blue) and LSTM(red) in free-motion test set with various model uncertainty. The upper figures are the
results of the first joint and the lower figures are the results of the second joint. (a): Without modeling error, the model uncertainty is a friction torque.
(b) (e): With error on mass or COM position, the model uncertainty contains friction torque and modeling error due to inaccurate model information. Note
that as the modeling error increases from (a) to (e), the scale of the model uncertainty also increases.

Fig. 6. Error of the estimated external torque using the proposed method
over joint speed in free-motion test data set. In the near-stiction region (pink
area), the robot is under the static fiction and LSTM could not predict the
static fiction resulting in large error. In the sliding region (light blue area),
the robot is under the friction in sliding mode and the errors in this region
was smaller than the errors in the near-stiction region.

Fig. 7. Outputs of the MOB and LSTM in case of when there is no model
at all. 10 collisions occurred in light blue areas where the disturbance torque
estimated from MOB (black line) peaked, while the model uncertainty
torque estimated from the LSTM (dotted red line) did not change rapidly.

The results according to the type of perturbed model are
shown in Fig. 5. First, in Fig. 5 (a), the results of the LSTM
and MOB with no modeling error are represented. In this
case, it is assumed that the modeling error is minor and the
output of the MOB is mainly friction torque. From Fig. 5
(a) and TABLE I, it is observed that the LSTM output is
similar to the MOB output in the free-motion with an L1
norm error of 0.402 Nm and 0.262 Nm for each joint in the
test set. This demonstrates that the LSTM properly learns
the friction torque in free-motion.

Then, the LSTM was trained with perturbed versions of

MOB (Mass Error, COM Error, Mass+COM Error, Without
Model). Fig. 5 (b)-(e) shows that the LSTM can also esti-
mate these uncertainty-containing MOB outputs successfully.
Additionally, as shown in Table I, test results across the
perturbed models show small regression errors in the test
set.

However, when the error between the MOB and the LSTM
is plotted over joint velocity, the error is significantly high
in the near-stiction region (|q̇| <0.02 rad/s) as shown in Fig.
6. In all cases, the magnitude and variance of the error
are higher in the near-stiction region than in the sliding
region, which implies that the LSTM can not properly
find the pattern of the uncertainty from the input when
the robot rarely moves. Representatively, when there is no
modeling error, root-mean-squared error (RMSE) of the first
joint in the sliding region is 0.418Nm, whereas RMSE in
the near-stiction region is 1.344Nm. The deterioration of
the performance in the near-stiction region is presumed to
be the effect of the static friction. It was assumed that
the estimated friction torque is the friction in the sliding
region in Section III-B, however, static friction cannot be
estimated from the selected input, time series of q and q̇.
More specifically, as the motor torque gradually increases,
the static friction increases until the motor torque exceeds
the maximum stiction force without changes in states q and
q̇. Therefore, with the input of q and q̇, the static friction
could not be determined uniquely. Consequently, the data
under static friction deteriorate training in the near-stiction
region. For practical and efficient collision detection, the
threshold can be set differently in the near-stiction region
and the sliding region.

D. External Torque Estimation and Collision Detection

In this section, it is demonstrated that the pure external
torques can be estimated and collisions can be successfully
detected using the proposed method.

Ten collisions occurred while the robot was randomly
moving, and the outputs of the MOB and LSTM, when there
is no model at all, are observed. As shown in Fig. 7, the MOB
output rapidly increased when the human pushed the robot,
although there was no significant change in LSTM because



Fig. 8. External torque measured with JTS (black) and estimated with the proposed method (red, pink, green, blue and light blue) and collision detection
delay at three collision cases. The proposed method is applied to the cases when there is no modeling error (red), mass error (pink), COM error (green),
mass+COM error (blue), and no information on the model (light blue) respectively. (a), (b), (c): Estimated external torque using the proposed method
according to the perturbed model (colored line) and the measured external torque using JTS (black). (d), (e), (f): Enlarged figures at the moment of the
collision.

it only learns model uncertainty torque. This difference
between MOB and LSTM is the estimated external torque
occurred from the collision, and all the estimated external
torque in 10 collisions exceeded the threshold obtained from
the validation data set. Although the results of other types of
modeling errors are not shown, all 10 collisions were also
successfully detected in all cases.

Then, in the first joint, the estimated external torque
(τ̂ext = τMOB− τLST M) obtained from the proposed method
was compared with the measurement from JTS in Fig. 8.
The joint torque produced by the motion τdyn = M(q)q̈+
C(q, q̇)q̇+g(q) is directly subtracted from the JTS measure-
ment to calculate the reference external torque and low-pass-
filter with ωc = 20rad/s is applied. In Fig. 8 (a), (b), and
(c), the result verifies that the external torques estimated by
the proposed algorithm across various types of modeling
error are similar to the external torque measured from the
torque sensor with respect to magnitude and responsiveness.
However, occasionally there is a gap between the estimated
external torque and the measured external torque, as shown
in Fig. 8 (c). This difference could have occurred due to the
static friction, measurement error, or a training error.

The collision detection delay in the first joint was calcu-
lated in the case without modeling error using the proposed
method. Here, the threshold is set to the maximum regression
error of the LSTM in the sliding region (τthr = 4.62Nm),
and the baseline of the detection time is calculated from the
JTS with the same threshold. Three cases of collision are
represented in Fig. 8. In Fig. 8 (d), (e), and (f), the relative
detection delays of the LSTM from the baseline were 3ms,
6ms, and −1ms, respectively. It can be seen that the JTS
detects the collision faster than the proposed method in the
usual cases, as shown in Fig. 8 (d), (e), but the sensitivity is
reversed in some cases, as shown in Fig. 8 (f). The results
of other types of modeling error shows a similar sensitivity

and tendency to the estimated external torque, as shown in
Fig. 8 (d), (e), and (f).

V. CONCLUSIONS

In this paper, a MOB-based collision detection method
considering model uncertainty with LSTM is proposed. In
the proposed method, the model uncertainty, which contains
modeling error and friction, is learned with the LSTM under
free-motion. When properly trained, the applied external
torque can be identified by subtracting the output of the
LSTM from the disturbance torque estimated from MOB.
Using the proposed method, the external torque can be esti-
mated and collisions can be detected accordingly using only
proprioceptive sensors even in a limited situation where a
precise dynamics model and friction model are not available.

The method’s ability to detect a collision and to es-
timate external torque were shown by experiments using
a 2-DOF torque-controlled test platform. The experiments
demonstrated that the proposed algorithm can handle friction
and various types of modeling error which ranges from an
error of mass and COM position to the extreme case where
no information on the model is available.

However, since the friction was assumed to be in the
sliding region, the effect of static friction could not be
reflected and consequently deteriorated the performance.
An additional input variable or network structure which
can model the static friction can be considered to improve
performance in future work. Also, human-robot interaction
using the estimated external torque can be explored to extend
the applicability of the method.
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