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A Model Predictive Capture Point Control
Framework for Robust Humanoid Balancing via

Ankle, Hip, and Stepping Strategies
Myeong-Ju Kim1, Daegyu Lim1, Gyeongjae Park1, and Jaeheung Park1,2

Abstract—The robust balancing capability of humanoid robots
against disturbances has been considered as one of the crucial
requirements for their practical mobility in real-world environ-
ments. In particular, many studies have been devoted to the
efficient implementation of the three balance strategies, inspired
by human balance strategies involving ankle, hip, and stepping
strategies, to endow humanoid robots with human-level balancing
capability. In this paper, a robust balance control framework for
humanoid robots is proposed. Firstly, a novel Model Predictive
Control (MPC) framework is proposed for Capture Point (CP)
tracking control, enabling the integration of ankle, hip, and
stepping strategies within a single framework. Additionally,
a variable weighting method is introduced that adjusts the
weighting parameters of the Centroidal Angular Momentum
(CAM) damping control over the time horizon of MPC to improve
the balancing performance. Secondly, a hierarchical structure of
the MPC and a stepping controller was proposed, allowing for
the step time optimization. The robust balancing performance of
the proposed method is validated through extensive simulations
and real robot experiments. Furthermore, a superior balancing
performance is demonstrated, particularly in the presence of
disturbances, compared to a state-of-the-art Quadratic Program-
ming (QP)-based CP controller that employs the ankle, hip,
and stepping strategies. The supplementary video is available
at https://youtu.be/CrD75UbYzdc

Index Terms—Humanoid walking control, push recovery, cap-
ture point (CP) control, model predictive control (MPC), and
three balance strategies (ankle, hip, and stepping strategies).

I. INTRODUCTION

HUMANOID robots have been studied to achieve human-
like walking capability in environments designed for hu-

man activities. However, their ability to adapt to disturbances
caused by uneven terrain and potential collisions remains
a challenge. To navigate these environments successfully, a
robust balance control strategy that overcomes disturbances
and ensures safe locomotion is essential.

In order to attain robust balancing performance in humanoid
robots, researchers have been inspired by human balance
strategies, and several researches are conducted to study them
[1]–[3]. The imitation and analysis of human balance strate-
gies, including ankle, hip, and stepping strategies, have been

This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No.
2021R1A2C3005914).

1Myeong-Ju Kim, Daegyu Lim, Gyeongjae Park and Jaeheung Park are
with the Department of Intelligence and Information, Seoul National Univer-
sity, Republic of Korea. Contact : park73@snu.ac.kr

2Jaeheung Park is also with the Advanced Institutes of Convergence Tech-
nology, Republic of Korea and with ASRI, RICS, Seoul National University,
Republic of Korea.

Fig. 1: Dynamic balancing of humanoid robot using ankle,
hip, and stepping strategies in the presence of disturbances.

explored using a simple model [4]–[6]. The lessons learned
from these investigations have been applied to humanoid robot
research, with each strategy being implemented in a distinct
manner. Specifically, the ankle strategy has been implemented
through the Zero Moment Point (ZMP) control and the hip
strategy has been implemented using Centroidal Angular Mo-
mentum (CAM) control. Lastly, the stepping strategy has been
realized through the stepping control, which adjusts footstep
position or step time.

In the early days of humanoid walking research, many
studies were conducted to control ZMP, which is frequently
referred to as an ankle strategy, by utilizing a simplified
model. The Linear Inverted Pendulum Model (LIPM) [7], [8]
was introduced, which simplifies the dynamics of complex
humanoid robots, and the linear relationship between the
Center of Mass (CoM) and ZMP [9], [10] is established. Many
studies aimed to minimize the error between the reference
ZMP and the actual ZMP, premised on the concept that if
the ZMP is positioned within the support region, the robot
will remain stable [11]–[15]. Kajita et al. [11] proposed a
preview control method that considers a future reference ZMP
trajectory, which compensates for ZMP errors by generating
CoM trajectories. Choi et al. [12] calculates the desired CoM
velocity to regulate ZMP and CoM errors, and utilizes the
CoM Jacobian to generate the desired CoM velocity. Kim et al.
[13] proposed a state observer-based ZMP feedback controller
that accounts for the joint elasticity of the robot. Kajita et
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al. [14] calculates contact wrenches to track the reference
ZMP and utilized an admittance control method to generate
the calculated contact wrenches. Joe et al. [15] proposed a
comprehensive ZMP control framework that combines the
state feedback controller suggested in [13] with the contact
wrench controller proposed in [14]. While these studies have
greatly contributed to the research on balancing in humanoid
walking, the robot’s ability to maintain balance relies only on
ZMP control whose balancing capacity is limited by the size of
the supporting polygon. Therefore, additional strategies were
necessary to withstand strong disturbances.

Studies have been conducted to enhance the balancing
capabilities of humanoid robots by exploring not only the
ankle strategy utilizing ZMP control but also the hip strategy
utilizing the robot’s upper body. The hip strategy is commonly
used in humanoids to control the CAM with the upper body.
To account for the angular momentum that was disregarded
in the LIPM, simple models such as Angular Momentum in-
ducing inverted Pendulum Model (AMPM) or Linear Inverted
Pendulum Plus Flywheel Model (LIPFM) have been proposed
[16]–[18], and the dynamic relationship between the CoM and
Centroidal Moment Pivot (CMP) has been defined [18]. Based
on this, many CAM control frameworks have been proposed
to overcome external disturbances [19]–[24]. Yi et al. [20]
proposed a CAM control framework that generates a desired
CAM through the hip joint and sequentially recovers the initial
pose at a predetermined time when the CoM is perturbed by
external disturbances. Schuller et al. [22] proposed a CAM
control framework based on whole-body dynamics, in which
the CAM tracking control and initial pose return control are
operated by soft hierarchy-based Quadratic Programming (QP)
optimization. In our previous CAM control approach [23], we
addressed the issue of degraded balancing performance caused
by the conflict between initial pose control and CAM tracking
control arising from the soft hierarchy in [22] by utilizing a
control framework based on Hierarchical Quadratic Program-
ming (HQP). Ding et al. [24] proposed a CAM controller that
plans arm trajectories to improve balancing performance using
the Model Predictive Control (MPC) approach. These methods
have been shown to improve balancing performance. However,
the amount of CAM generation in a robot is constrained by
the joint limit of the robot and the self-collision avoidance,
which in turn affects the robot’s ability to maintain balance.

The stepping control, which adjusts the footstep position
or step time in an adaptive manner to disturbances, has
greatly improved the balancing performance of humanoid
robots compared to the conventional walking control based on
pre-determined footsteps and step time [25]–[31]. Under the
notion that the position of the CoM converges to the Capture
Point (CP) using LIPM dynamics, several stepping algorithms
have been proposed [26], [27], [29], [30]. Khadiv et al. [26],
[30] proposed a framework that employs QP optimization
based on the CP end-of-step dynamics to calculate the footstep
position and step time. This approach tracks the pre-planned
CP offset during walking by adjusting the footstep position
and step time. Jeong et al. [27], [29] proposed a stepping
control method that also utilizes CP end-of-step dynamics,
where the ankle torque is pre-calculated in response to external

disturbances, and the step time and footstep position are
optimized accordingly. Furthermore, many control frameworks
have been proposed for adjusting footstep position against
disturbances by utilizing MPC optimization [25], [28], [31].
Herdt et al. [25] proposed an MPC framework that extends the
framework proposed by Wieber et al. [32], by automatically
adjusting the footstep position to control the CoM velocity
and the ZMP error. Joe et al. [28] proposed a framework for
adjusting footstep position when the desired ZMP generated
to reduce ZMP error is limited by ZMP constraints. The
continuous evolution of stepping algorithms has significantly
contributed to humanoid balance control.

With the advancement of each balance control strategy,
many studies have been proposed with the aim of integrating
these strategies to enhance balancing capability [33]–[36].
Shafiee-Ashtiani et al. [33] proposed a linear MPC framework
that builds upon the MPC-based stepping controller suggested
by [25] to combine three balance strategies (ankle, hip, and
stepping strategies). In this approach, the ZMP and CoM
velocity control problem proposed in [25] was changed to a
ZMP and CP control problem. Furthermore, the control inputs
were expanded to include change of the centroidal moment,
resulting in improved control performance. Ding et al. [34],
[35] proposed a nonlinear MPC framework using a nonlinear
Inverted Pendulum Flywheel (IPF) model. By considering the
nonlinear relationship between CoM and ZMP in IPF as a
quadratic constraint, the method adjusts the ZMP and body
angles, as well as the footstep position to compensate for
large disturbances. Romualdi et al. [36] proposed a nonlinear
MPC framework for disturbance rejection based on centroidal
dynamics, which involves the control of contact wrench,
CAM, and footstep position. These studies developed a robust
walking framework to cope with disturbances by integrating
the three balance strategies through MPC. However, they did
not consider step time adjustment algorithms, which play a
crucial role in withstanding disturbances.

Studies that included the three balance strategies and a
step time adjustment were also proposed [37]–[39]. Aftab et
al. proposed an MPC-based balance control framework that
integrates three balance strategies and step time adjustment
to address disturbances [37]. To avoid a biased output of
the smallest step time during step time optimization, a swing
foot acceleration cost was introduced to adjust the step time
appropriately. However, due to the nonlinearity arising from
step time optimization, the algorithm could not be used in real-
time and was only applicable to standing situations, not in the
walking control. Nazemi et al. proposed a reactive walking
pattern generator based on hierarchical structure [38]. In this
approach, the stepping controller proposed by [26], [30] is
first used to determine the footstep position and step time
for the stepping strategy. Subsequently, the CP trajectory and
body angle were adjusted using MPC to track the reference
ZMP trajectory determined by the pre-planned footstep po-
sition and step time. Jeong et al. [39] proposed a QP-based
optimization method to achieve three balance strategies with
step time adjustment for controlling the CP end-of-step. In this
method, to avoid the variable coupling during the linearization
for QP, the ZMP control input for ankle strategy was pre-
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computed using the instantaneous CP control method [40],
rather than through optimization. Based on this pre-computed
ZMP control input, the CAM control and stepping control
are performed through QP optimization. In [38], [39], the ro-
bust balancing performance was validated against disturbances
through simulations or experiments. However, three balance
strategies cannot be computed from a single framework in
[38], [39]. Additionally, these methods are unable to consider
future states and constraints beyond the current walking step,
which can affect the balancing performance. This limitation
arises from the control framework relying on CP end-of-step
dynamics, which restricts the prediction horizon to the current
step duration.

In this paper, a robust balance control framework is pro-
posed to overcome disturbances through the integration of
three balance strategies and step time optimization (as shown
in Fig. 1). In contrast to [38], [39], our research does not
restrict the horizon time of MPC based on the current step
duration. The proposed framework expands upon our prior
works [23], [31] that were developed for the same goal, i.e.,
CP tracking control. We combined the hip strategy in [23] and
the ankle and stepping strategies in [31] into a single MPC
framework. With novel ideas, we addressed several technical
problems that arose during the integration process, thereby
enhancing the coherence between control hierarchies in the
proposed control framework. The primary contributions of this
paper can be summarized as follows:

1) An MPC framework that integrates three balance strate-
gies for CP tracking control is proposed. The proposed
MPC framework is an extension of the MPC frame-
work proposed in our prior work [31]. Unlike [31],
the proposed framework includes MPC optimization to
handle not only ZMP control and stepping control but
also CAM control. Furthermore, this framework enables
more effective CAM control through MPC, unlike the
heuristic CAM calculation method based on CMP de-
composition proposed in our previous study [23]. To the
best of our knowledge, the proposed MPC is the first
integrated MPC framework for CP tracking control that
implements all three balance strategies. Our approach
differs from [33] in that in our MPC framework, footstep
position control is driven by CP control instead of ZMP
control.

2) A novel variable weighting method for CAM control is
proposed. This method adjusts the weighting parameters
of CAM damping control during the time horizon of
the MPC to enhance the CP control performance and
demonstrates better balancing performance compared to
the conventional constant weighting method.

3) A hierarchical structure of the proposed MPC and
stepping controller enables optimization of step time.
Furthermore, an approach for determining stepping con-
trol parameters based on the MPC is suggested, which
achieves better control performance than the previous
parameter selection approach [26], [30], [31].

4) The proposed method is validated through extensive sim-
ulations and real robot experiments using our humanoid

robot, TOCABI. Additionally, when compared to a state-
of-the-art QP-based CP controller that incorporates three
balance strategies [39], the proposed method demon-
strates superior balancing performance in the presence
of disturbances.

This paper is organized as follows. In Section II, we
briefly introduce the LIPFM and CP dynamics that underlie
the walking control framework proposed in this paper. In
Section III, an overview of the walking control framework
is introduced. Section IV provides a detailed description of
the MPC framework proposed in this paper, while Section
IV-C introduces the variable weighting method proposed in
this paper. Section V describes the proposed MPC-based
stepping controller. In Section VI, the results of simulations
and real robot experiments conducted to validate and analyze
the proposed algorithm are presented. Finally, in Section VII,
the conclusion of this paper is presented. Subsequently, we
shall refer to the proposed MPC framework as CP–MPC for
the remainder of this paper.

II. FUNDAMENTALS

A. Linear Inverted Pendulum Plus Flywheel Model

The LIPFM is a linear abstract model that was developed
to address the CAM of humanoid robots [18]. The LIPFM
assumes that the total mass of the robot is concentrated at the
CoM, and the height of the CoM from the ground is considered
to be constant. Unlike the LIPM [7], [8], the LIPFM is capable
of handling reaction torque by means of the rotational motion
of a flywheel located at the CoM. The dynamic equation of
the LIPFM is expressed in terms of the relationship between
the CoM and the CMP, and is defined as follows,

c̈x = ω2(cx − px), (1)

px = zx +
τy
mg

, (2)

where cx, px, and zx denote the positions of CoM, CMP, and
ZMP in the x-direction, respectively. ω =

√
g/cz is the natural

frequency, g is the gravitational acceleration, and cz is the
height of the CoM from the ground. τy represents the reaction
torque of the flywheel in the y-direction. A detailed derivation
of LIPFM dynamics is presented in [18].

The dynamics of LIPFM in the y-direction can also be
derived in the same way as the x-direction, and the dynamics
in each direction can be dealt with independently. This decou-
pling property of the system simplifies the analysis and control
of the system and makes it easier to handle each direction
separately. Therefore, in this study, the dynamics were derived
only in the x-direction for conciseness of the paper, except for
Section V, where the step time variable couples both x- and
y-direction variables.

B. Capture Point dynamics based on LIPFM

This section provides a brief introduction to the CP dy-
namics based on LIPFM. The concept of CP, introduced in
[18], [41], has been extensively utilized in various studies as
a control variable for stabilizing the CoM of a robot and as
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Fig. 2: Overall control framework for robust humanoid walking; Three balance strategies are employed for CP tracking control
based on the CP–MPC, and next footstep position and step time are determined by the stepping controller.

an indicator of its balance state [15], [21], [27], [28], [40],
[42]–[44]. The dynamics of the CP is expressed as a linear
combination of horizontal position and velocity of the CoM
as below,

ξx = cx +
ċx
ω
, (3)

where ξx represents the CP in the x-direction. The LIPFM
also allows the CP to be expressed as a dynamic relationship
with the CMP. By combining (1) with the time derivative of
(3), the dynamics of the CP–CMP can be derived as

ξ̇x = ω(ξx − px) = ω(ξx − (zx +
τy
mg

)). (4)

Assuming a constant value of the CMP, px, within a walking
step duration of T , and considering the time elapsed after the
start of the swing phase as t, the behavior of the CP can be
defined as follows,

ξx,T = (ξx − px)e
ω(T−t) + px. (5)

Equation (5), known as the CP end-of-step dynamics [29],
[39], [40], provides a means to predict the CP at the end of a
current step by using the current CP, current time, and CMP
as inputs.

In Section IV, the CP–CMP dynamics (4) is employed as
a prediction model in the proposed CP–MPC. Additionally,
the CP end-of-step dynamics (5) is utilized for the stepping
controller presented in Section V.

III. OVERALL WALKING CONTROL STRUCTURE

This section provides the overview of the proposed walking
control framework. The schematic diagram of the overall
walking control framework is illustrated in Fig. 2. First, the
footstep planner determines the positions of footstep, Fref =
[Fref

x Fref
y ], based on the target velocity command. Using

the footstep positions as input, the ZMP trajectory generator
generates reference ZMP trajectories, Zref = [Zref

x Zref
y ] ∈

RN×2. The walking pattern generator then takes these ref-
erence ZMP trajectories as input and produces reference CP
trajectories, Ξref = [Ξref

x Ξref
y ] ∈ RN×2.

The main goal of CP–MPC is to track the reference CP tra-
jectories. The CP–MPC receives the reference CP trajectories

as its control target and generates three optimized MPC vari-
ables, including ZMP control inputs, Z = [Zx Zy] ∈ RN×2,
centroidal moment control inputs, τ = [τy − τx] ∈ RN×2,
and footstep adjustments, ∆F = [∆Fx ∆Fy] ∈ Rm×2,
from Fref to track these trajectories. Note that N represents
the prediction horizon for the CP–MPC, while m denotes
the number of pre-designed footsteps within the prediction
horizon, N .

The ZMP controller [14] computes desired contact wrenches
to achieve the desired ZMP, zdes = [zdesx zdesy ] ∈ R2, which is
the first element of the ZMP control inputs, Z. Subsequently,
the admittance controller compares the measured contact
wrench, wL,R ∈ R6, with the desired contact wrench to
determine the changes of the position and orientation of the
support foot with respect to the pelvis, ∆eL,R ∈ R6. The
subscript L and R signify the left and right, respectively.

The stepping controller calculates the next footstep position,
f = [fx fy] ∈ R2, and the step time, T , to achieve the footstep
adjustment, ∆f1 = [∆fx,1 ∆fy,1] ∈ R2, planned by CP–MPC.
Specifically, the controller primarily adjusts the step time, T ,
based on CP end-of-step dynamics (5) to ensure that the f
achieves ∆f1 as closely as possible. Here, ∆f1 refers to the
first element of ∆F, representing the adjustment of the next
footstep. The detailed explanation is described in Section V.
After determining f and T , the foot trajectory generator creates
reference foot trajectories, erefL,R ∈ R6. Consequently, the
lower body inverse kinematics is solved for the desired joint
angles of legs, qdes

lb , required to achieve the reference CoM
trajectories, cref ∈ R3, reference foot trajectories, erefL,R ∈ R6,
and displacement of the support foot pose, ∆eL,R ∈ R6. In
addition, when a step change occurs, the footstep planner
generates footsteps based on the target velocity command
relative to the supporting foot.

The desired centroidal moment, τ des = [τdesy −τdesx ] ∈ R2,
which is the first element of the centroidal moment control
inputs, τ, is controlled by the HQP-based CAM controller
proposed in our previous study [23]. The desired centroidal
moment, τ des, is integrated to yield the desired CAM, and
the HQP-CAM controller computes the desired upper body
joint angles, qdes

ub , to achieve the desired CAM.
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In the final stage, the joint PD controller is employed to
calculate the joint torques required to track the upper and
lower body motions. These computed joint torques, Γpd, are
then commanded to the joints in conjunction with the gravity
compensation torque, Γg .

IV. CP–MPC: MODEL PREDICTIVE CONTROL
FRAMEWORK FOR CAPTURE POINT TRACKING

In our previous study [31], we proposed a linear MPC
framework that controls the ZMP and footstep position to fol-
low the CP trajectory (ankle and stepping strategies). In [31],
the CP control performance, which was previously limited by
the ZMP constraint in the MPC of [45], was improved by
relaxing the ZMP constraint through the adjustment of footstep
position.

In this work, we extend the framework of our previous
study [31] to propose CP–MPC, the MPC framework that
incorporates three balance strategies: ankle, hip, and stepping
strategies. The proposed CP–MPC utilizes not only the ZMP
and footstep position but also the centroidal moment to
enhance the CP control performance against strong external
disturbances. Detailed explanations of the proposed MPC
framework are provided in the following subsections.

A. Prediction of Future Trajectory

In order to formulate the CP–MPC, the CP–CMP dynamics
described in (4) is utilized as a prediction model. Equation (4)
can be discretized with the piecewise ZMP, centroidal moment,
and sampling time Ts as below,

ξx,k+1 = Aξx,k +B [zx,k τy,k]
T (6)

where A = eωTs ,B =
[
1− eωTs 1−eωTs

mg

]
. The CMP, px,

can be decomposed into ZMP, zx, and centroidal moment, τy ,
as shown in (4), and two variables are independently treated
as control inputs of the CP–MPC.

By recursive application of (6), the predicted future trajec-
tories of CP over the time horizon, N , that emanate from the
current CP, ξx,k, can be expressed as below,

Ξx = Φξξx,k +ΦpPx, (7)

Φξ =

 A
...

AN

 , Φp =

 A0B · · · 0
...

. . .
...

AN−1B · · · A0B

 , (8)

Ξx =

 ξx,k+1

...
ξx,k+N

 , Px =


zx,k
τy,k

...
zx,k+N−1

τy,k+N−1

 . (9)

Ξx ∈ RN represents the predicted future CP trajectory in
the x-direction and Px ∈ R2N denotes the future inputs
of the ZMP and centroidal moment. The matrix Φξ ∈ RN

defines the dynamic relationship between the current CP, ξx,k,
and future CP trajectory, Ξx. The matrix Φp ∈ RN×2N

defines the relationship between future inputs, Px, and fu-
ture CP trajectory, Ξx. In Px, to handle each control in-
put independently, we represent the series of ZMP vectors
as Zx = [zx,k zx,k+1 · · · zx,k+N−1]

T ∈ RN , and the se-
ries of centroidal moment vectors is represented as τy =
[τy,k τy,k+1 · · · τy,k+N−1]

T ∈ RN .

B. Problem Setup for MPC Optimization

This section presents the problem formulation for MPC
optimization. The cost function and constraints of the proposed
CP–MPC framework are formulated as follows,

min
Px,∆Fx

∥Ξx −Ξref
x ∥2wξ

+ ∥τy +Kdhy∥2wτ
(10)

+∥∆Fx∥2wF
+ ∥∆Px∥2wp

s. t. Zx ≤ Ap

[
Zx

∆Fx

]
≤ Zx (11)

τy ≤ τy ≤ τy

∆Fx ≤ ∆Fx ≤ ∆Fx

with

Ap =
[
IN −S

]
, S =

s1,1 s1,2 · · · s1,m
...

...
. . .

...
sN,1 sN,2 · · · sN,m

 .

The cost function in (10) is composed of four cost terms
in total. The first cost term functions as a reference CP
trajectory tracking control and is weighted by a positive
diagonal weighting matrix, wξ ∈ RN×N . The second cost
term generates the damping centroidal moment that drives the
desired CAM to zero when the magnitude of the disturbance
is small. Here, Kd ∈ RN×N is a damping matrix which
is positive and diagonal and hy ∈ RN is the CAM in y-
direction which is an integration of τy . This term is weighted
by a positive diagonal matrix, wτ ∈ RN×N . The diagonal
terms of wτ are adjusted based on the magnitude of the
ZMP control inputs to improve the CP control performance.
This adjustment algorithm is explained in Section IV-C. The
third cost term regulates the additional footsteps adjustment
from the pre-planned footsteps. This term is weighted by a
positive diagonal matrix, wF ∈ Rm×m. The last cost term
regulates the change of the control input to prevent rapid
changes and generate a smooth control input. This term is
weighted by positive diagonal matrix, wp ∈ R2N×2N . The
MPC variables consist of Px and ∆Fx, where Px ∈ R2N

represents the ZMP and centroidal moment input sequence,
and ∆Fx = [∆fx,1∆fx,2 · · ·∆fx,m]T ∈ Rm represents a
vector consisting of additional footstep adjustments in the x-
direction.

The constraints in (11) consist of three inequality condi-
tions. The first constraint refers to the ZMP constraint, which
confines the ZMP control input, Zx ∈ RN , within the support
polygon. The vectors Zx ∈ RN and Zx ∈ RN indicate the
upper and lower limits of ZMP inputs, respectively, based on
the geometry of the support feet. In the matrix Ap, the matrix
IN ∈ RN×N refers to an N size identity matrix and the matrix
S ∈ RN×m represents a selection matrix whose element,
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TABLE I: The parameters of CP–MPC and stepping controller
used in the simulations and real robot experiments.

CP–MPC
Parameters Value

wξ,x,y
10.0 (i = 1), 5.0 (i = 2 ∼ N − 10),
100.0 (i = N − 10 ∼ N)

wp,x,y
0.1 (i = 1), 10.0 (i = 2 ∼ N − 10),
0.1 (i = N − 10 ∼ N)

wF,x,y 0.001
wτ,y 1.0× 10−6 (∆zmin,x : 0.05) −→ 0 (∆zmax,x : 0.1)
wτ,x 1.0× 10−6 (∆zmin,y : 0.04) −→ 0 (∆zmax,y : 0.07)
Kd 50.0 IN
Zx,Zx [m] (Zref

x − 0.09, Zref
x + 0.12)

Zy ,Zy [m] (Zref
y − 0.07, Zref

y + 0.07)

∆Fx,∆Fx [m] (−0.2, 0.2) w.r.t support foot
∆Fy ,∆Fy [m] (−0.1, 0.03)/(−0.03, 0.1) w.r.t left/right support foot
τy,x, τy,x [N ·m] (−15.0, 15.0) (Simulation) / (−7.0, 7.0) (Experiment)

Stepping controller
Parameters Value

wf,x,y 1000.0
wb,x,y 3000.0
wγ 1.0

f
x,y

, fx,y [m] (fnom,x,y − 0.05, fnom,x,y + 0.05)

bx,y , bx,y [m] (bnom,x,y − 0.10, bnom,x,y + 0.10)

T , T [s] (Tnom − 0.2, Tnom + 0.2) / γ = eωT

sN,m, is 1 or 0. The matrix, S, activates ∆Fx within the time
horizon after the current Single Support Phase (SSP). Using
∆Fx to relax the ZMP constraint in situations where ZMP
control inputs are limited improves the performance of CP
control by increasing flexibility in generating ZMP control in-
puts. The second constraint refers to the limit on the amount of
centroidal moment that can be produced by the robot’s motion.
The vectors τy ∈ RN and τy ∈ RN indicate the upper and
lower bounds of the centroidal moment, respectively. The last
constraint denotes the kinematic constraint of the additional
footsteps to prevent singularities and self-collisions between
each leg. The vector ∆Fx ∈ Rm and ∆Fx ∈ Rm refers to the
upper and lower bounds of additional footsteps adjustment.
The values of weighting parameters and constraints used in
the experiments are summarized in Table I.

C. Variable Weighting Parameter for CAM control

The CAM control approaches have been widely utilized
in many studies to overcome large disturbances that affect
robots. In general, a desired CAM of humanoids is initially
generated to overcome external disturbances, but it should
be converged to zero in steady-state. This is because there
is no need to generate constant CAM for the balancing
purpose in steady-state, and furthermore, a constant desired
CAM cannot be generated continuously by the joint limits
of the robot. The convergence process of desired CAM can
be implemented heuristically during a specific time period
[20] or under certain conditions [22], [23], [46]. However,
this issue is more commonly addressed through optimization
methods by implementing a CAM regulation term or damping
actions of the CAM change, i.e., centroidal moment, in the
cost function [34], [36], [39], [47], [48]. In our case, the
convergence process of desired CAM is also addressed through
the damping action of the centroidal moment in MPC opti-
mization. However, these approaches commonly suffer from a

Fig. 3: Decision process of variable weighting parameters in
CP–MPC.

trade-off between generating the desired centroidal moment to
overcome the disturbance and the term that drives the CAM
to zero, which can have a negative impact on the balancing
performance.

To address this problem, a novel variable weighting ap-
proach based on MPC is proposed. The purpose of this
approach is not to compromise the CP control performance
when the robot is subjected to large disturbances, by reducing
the weighting parameter, wτ , to reduce the influence of the
damping cost term in (10). This allows the robot to generate
more control input τ in the presence of disturbances, thereby
improving balance performance. Furthermore, in the steady-
state when the disturbances diminish, the weighting parameter
can be increased to dampen the generation of CAM.

Fig. 3 presents the scheme of the decision process of
the variable weighting parameters in the x-direction. In Fig.
3, when a significant disturbance is applied to the robot,
ZMP control inputs, Zx, increase in CP–MPC to control the
perturbed CP. Then, weighting parameters, wτ , are determined
through a one-to-one mapping using cubic function according
to the magnitude of the delta ZMP inputs, |∆Zx| = |Zx −
Zref

x | ∈ RN . Note that Zref
x ∈ RN represents the reference

ZMP trajectory in the x-direction based on the pre-planned
footstep. This mapping enables a reduction in wτ as the |∆Zx|
for controlling the CP increases. As a result, the damping
cost term in (10) becomes less influential, and the centroidal
moment, τy ∈ RN , is primarily generated to balance the
robot against disturbances. The operational principle of this
algorithm is based on the observation that the increased ZMP
control inputs, Zx, indicate that the robot is subjected to a
substantial disturbance, thereby requiring more control inputs
to accurately track the CP trajectory. Therefore, the capability
of CP control can be increased by increasing the generation
of another control input, τy . The same process is applied in
the y-direction, independent of the x-direction.

Finally, the desired centroidal moment, τ des = [τdesy −
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τdesx ], is integrated to the desired CAM at each time step,
hdes = [hdes

y − hdes
x ], as follows:

hdes
i =

∫
τdesi dt, i = x, y (12)

The desired CAM is controlled by our previously proposed
HQP-based CAM controller [23], which prioritizes CAM
control first and performs the initial pose return task with
secondary priority, resulting in improved CAM control perfor-
mance. The effectiveness of the variable weighting approach
will be validated in Section VI-E.

V. STEPPING CONTROLLER BASED ON CP–MPC

While footstep position adjustment has been extensively
studied in MPC approaches [24], [25], [28], [31], [36], opti-
mizing the step time in the MPC formulation is still considered
a challenging problem due to its non-convex nature. However,
since step time adjustment improves balancing performance
compared to adjusting footstep position alone, various methods
such as heuristic approaches [24], [44] or optimization based
on LIPM assumptions [30], [31], [38], [39], [49] have been
conducted in addition to MPC approaches.

In this study, we developed a hierarchical control structure
of CP–MPC and the stepping controller, enabling the step time
optimization based on MPC variables. Specifically, CP–MPC
utilizes ZMP, CAM, and footstep adjustment to track the CP
trajectory, while the stepping controller adjusted the footstep
position and step time to control the CP offset at the end of
step.

A. Overview of the Stepping Controller

In this section, an overview is provided for the adjustment
of footstep position and step time to control the CP offset in
the stepping controller. Our stepping controller is designed
based on the QP optimization proposed by Khadiv et al.
[26], [30] using LIPFM based CP end-of-step dynamics. The
dynamics of CP end-of-step based on LIPFM can be expressed
as follows,

ξT = f + b = (ξ −Pssp)e
−ωtγ +Pssp. (13)

In [26], [30], the stepping controller is primarily designed to
adjust the next footstep position, f = [fx fy], and step time
term, γ = eωT , ensuring that the CP offset, b = [bx by],
closely aligns with the planned CP offset. The CP offset in
LIPM-based walking has been identified as a critical factor
that determines the initial point of the exponential growth of
the CP in the next step, and has been emphasized in numerous
studies [26], [27], [30], [39], [40] as a key factor that affects
the walking stability. Based on these concepts, we also adjust
the footstep position and step time to control the CP offset.

Fig. 4 presents the overall concept of our approach in the
presence of disturbances. When the disturbance is applied to
the robot, the CP end-of-step (purple point), ξ

′

T , is predicted
using (13) to deviate significantly due to the disturbance. In
this case, the stepping controller adjusts the footstep position,
f , and the step time term, γ, to control the CP offset, b, at the
end of step. Unlike [26], [30], in our case, fnom is calculated

Fig. 4: Schematic representation of the stepping control; In
order to control the CP offset, footstep position and step time
are adjusted based on CP-end-of-step dynamics.

based on ∆f1 planned from CP–MPC, and f is adjusted to
prevent significant deviations from fnom. Consequently, γ is
primarily adjusted to control b.

B. Parameter Decision based on CP–MPC

This section describes the parameter decision for the nomi-
nal values of the next foot position, f , CP offset, b, step time
term, γ, and CMP parameters, Pssp, in (13). The nominal
footstep position, fnom = [fnom

x fnom
y ], is defined as the sum

of the reference next footstep position, fref1 , determined by the
footstep planner and the footstep adjustment, ∆f1, optimized
by CP–MPC to minimize the CP error over the future horizon,
as follows,

fnom = fref1 +∆f1. (14)

Here, nom and 1 refer to the nominal value and the next foot-
step, respectively. By incorporating ∆f1 into the calculation of
fnom instead of solely relying on fref1 , it leads to a reduction
in the cost of adjusting f (see Fig. 4) and consequently reduces
the CP offset optimization error.

Next, the nominal CP offset, bnom = [bnomx bnomy ], is
defined as the difference between the reference CP end-of-step,
ξrefT = [ξrefT,x ξrefT,y ], planned by the walking pattern generator
and the reference next footstep position, fref1 , to follow the
target velocity command,

bnom = ξrefT − fref1 . (15)

The nominal step time term, γnom = eωT ref

, is determined by
a pre-defined step time based on the target velocity command.

The CMP parameter, Pssp = [pssp,x pssp,y], (as shown
in Fig. 4) are calculated based on the average of CP–MPC
control inputs (ZMP and centroidal moment control inputs)
corresponding to the remaining SSP time within the prediction
horizon. The decision to utilize the average CP–MPC control
inputs in (13) is based on two considerations. Firstly, by
approximating the CP–MPC control inputs as a single point, it
becomes possible to reflect the tendencies of where the robot’s
CMP acts. This approach enables more accurate prediction of
the CP end-of-step compared to using a fixed CMP at the
center of the support foot or only the CMP control input for the
current time step. Secondly, it can improve the overall stability
of the stepping controller by smoothing out the noisy input at
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the current time step. The equation of the CMP parameter is
as follows,

Pssp =

T∑
i=k

zi + τi/mg

T − k + 1
(16)

where zi = [zx,i zy,i] and τi = [τy,i − τx,i] are the ZMP
and centroidal moment control input at each time step i,
respectively.

C. Formulating a QP problem for Stepping Controller

The QP formulation for adjusting the footstep position and
the step time to control the CP offset is as follows.

min
f ,γ,b

wf∥f − fnom∥2 + wγ(γ − γnom)2 (17)

+wb∥b− bnom∥2

s. t. f ≤ f ≤ f (18)
γ ≤ γ ≤ γ

b ≤ b ≤ b

f + b = (ξ −Pssp)e
−ωtγ +Pssp

The cost function in (17) is composed of the footstep position
error term, step time error term, and CP offset error term, and
each cost is weighted by wf , wγ , and wb, respectively. In
each of the optimization variables, f = [fx fy] represents the
next footstep position, γ represents the step time term, and
b = [bx by] represents the CP offset. The variable, γ = eωT ,
is introduced to linearize the equality constraint in (18). The
weighting parameter was set primarily to adjust the step time,
T , while also enhancing the consistency of f with the CP–
MPC output. To achieve this, we set the smaller weighting
value for the step time than the other weighting values as
listed in Table. I.

In (18), the inequality constraint is composed of the upper
and lower bounds for each optimization variable, and the
equality constraint is defined by the LIPFM based CP end-of-
step dynamics in (13). The variable, ξ, represents the current
CP, and the variable, t, represents the elapsed time since the
start of the swing phase. The variable, Pssp, refers to the CMP
parameter used in the equality constraint.

D. Characteristic of Our Parameter Selection Approach com-
pared to Previous Methods

In this section, we introduce improvements in our parameter
selection approach compared to previous studies [26], [30],
[31], [38].

Controlling the CP offset is crucial as it determines the
initial velocity of the CP in the next step, thereby significantly
affecting walking stability. Previous studies [26], [30], [38]
rigorously controlled the CP offset. However, in these studies,
the CP offset was derived under the assumption of a constant
walking velocity, as follows,

bnomx =
L

eωTnom − 1
, (19)

bnomy = (−1)n
D

eωTnom − 1
− W

eωTnom − 1
. (20)

Here, L represents the step length, D denotes the default step
width during walking, and W represents the deviation with
respect to the default step width. When n is equal to 1, it
indicates the right foot support phase, and when n is equal to
2, it indicates the left foot support phase.

The nominal CP offset in (19) and (20) can be derived
simply based on the CP end-of-step dynamics, and a detailed
derivation is presented in [30]. However, these derivations
include the assumption that the current step and the next step
have the same values for L, W , and Tnom. Therefore, this
assumption is violated when the walking velocity between
the current and next steps are different (e.g., walking with
different speeds for each step or sudden changes in walking
direction). On the contrary, in our approach, while using the
same QP formulation (17) as in previous studies, the CP offset
is determined from (15), taking into account the variations in
walking velocity at each step.

Next, in previous studies [26], [30], [31], [38], it was
assumed that the ZMP or CMP is fixed at the center of
the support foot (Pssp = Pref ), based on the point foot
assumption. However, in most humanoid robots, the foot has
a finite size and the ground reaction forces do not act exactly
at the center of the support foot. Indeed, the larger the robot’s
feet, the further the robot’s ZMP or CMP can deviate from
the center of its support foot. This can potentially violate the
point foot assumption on the CP dynamics based on LIPM or
LIPFM. Therefore, in this paper, the CMP parameter obtained
from CP–MPC is used to consider the behavior of CMP by
CP–MPC instead of the point foot assumption.

In Section VI-F, the effectiveness of the parameter selection
approach are analyzed through a comparison with the previous
methods.

VI. RESULTS OF SIMULATIONS AND EXPERIMENTS

A. System Overview

In this section, a comprehensive system overview for both
the simulations and real robot experiments is presented. The
humanoid robot, TOCABI, utilized in the simulations and
experiments comprises a total of 33 degrees of freedom
(DOFs): 16 for the arms, 12 for the legs, 3 for the waist,
and 2 for the neck. Its physical dimensions are approximately
1.8 m in height, weighing around 100 kg, and with a foot
size of 14 cm × 30 cm. The upper body actuators are
comprised of Parker’s BLDC motors and harmonic gears, and
the lower body actuators are composed of Kollmorgen’s BLDC
motors and harmonic gears. The current control of the robot is
performed by Elmo Motion Control’s Gold Solo Whistle servo
controller, and the communication between servo controller
and the main PC is achieved via EtherCAT communication.
MicroStrain’s 3DM-GX5-25 IMU is attached to the pelvis
for estimating the global inclination of the robot, and ATI’s
mini85 F/T sensor is mounted on each foot to measure the
contact wrench of the robot. The algorithmic operation and
torque command frequency of the robot are set to 2 kHz, and
the walking pattern generator and CP–MPC operate at 50 Hz
(shown in Fig. 2), due to the high computational load involved,
through parallel threads. The walking pattern generator and
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Fig. 5: Simulation results are presented for the robot’s response to external forces applied along both the negative x- and
y-directions, shown in (a) and (b) respectively. The second and third rows depict the output of the CP–MPC, while the fourth
and fifth rows show the reference foot trajectories and step time by the stepping controller.

CP–MPC have respective MPC time horizons of 2.5 s and
1.5 s. It should be noted that the positive direction of the x-
axis represents the robot’s forward direction, while the positive
direction of the z-axis is the opposite direction of the gravity
vector. The simulator employed in this study is the MuJoCo
simulator [50]. The parameters for each controller used in
the simulations and experiments of this paper are given in
Table. I, and the experimental results videos are available in
the supplementary materials.

B. Simulation to Validate Robustness of the Proposed Method
under External Forces

Simulations were conducted to evaluate the balancing capa-
bility of the robot against external forces using the proposed
method. The simulations involved a scenario where the robot
walked in the place and external forces are applied to the
robot’s pelvis link in the x- and y-directions during an SSP (left
foot support). The step duration was configured to consist of
an SSP of 0.6 s and a DSP of 0.3 s. Furthermore, adjustments
of the footstep position and step time are not allowed 0.1 s
before the end of SSP to prevent jerky motions in the swing
leg.

In the first simulation, a step external force of 240 N
was applied to the robot’s pelvis in the negative x-direction
for 0.2 s. Fig. 5(a) shows snapshots and data of the robot’s
response to the external force. The sequence of the snapshot

provides a visualization of the overall balancing process. The
robot maintains balance by employing ZMP control using
the supporting legs (ankle strategy), CAM control using the
upper body (hip strategy), and performing back steps (stepping
strategy).

The graph in Fig. 5(a) represents the outputs of the CP–
MPC and stepping controller in the x-direction. At approxi-
mately 5.9 s, the robot’s CP was pushed backward, causing
the CP error (green line), ξerr,x, to increase in the negative
x-direction due to the external force. To reduce the CP error,
the desired ZMP (red line), zdesx , is generated by the CP–
MPC. Despite the attempts to reduce the CP error through
the desired ZMP, it remained high due to the significant
external force and the ZMP constraint of -9 cm. As a result,
the CP error increased and reached up to -17.9 cm. Then,
footstep adjustment (blue line), ∆fx,1, was generated to re-
lax the ZMP constraint and the desired centroidal moment
(yellow line), τdesy , was also generated to reduce the CP
error additionally. The desired ZMP was generated up to
the relaxed ZMP constraint until approximately 8.2 s, while
the centroidal moment was generated up to the limit of -
15 Nm until approximately 7.9 s. Meanwhile, the stepping
controller performed a total of four back-steps (magenta and
cyan line) based on ∆fx,1, moving approximately -27.5 cm in
conjunction with an optimal step time (orange line), T . As a
result, the CP error is reduced to approximately zero, and the
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Fig. 6: Simulation results are presented for the robot’s forward walking while overcoming four unexpected objects, with
snapshots and output data provided. The second and third rows represent the output of the CP–MPC, while the fourth and fifth
rows show the reference foot trajectories and step time by the stepping controller.

robot maintains a balance against the external force.
In the following simulation, a step external force of 500 N

was applied to the robot’s pelvis in the negative y-direction for
0.2 s. Fig. 5(b) presents snapshots and y-direction data of the
robot’s response to the external force. Similar to the previous
simulation, the robot maintained balance by stepping in the
direction of the external force while performing ZMP control
and CAM control.

Fig. 5(b) represents the robot’s data, including the CP–MPC
and stepping controllers’ y-direction outputs. At approximately
5.9 s, the external force was applied to the robot in the negative
y-direction, leading to a significant deviation in the CP error
(green line), ξerr,y . The CP–MPC attempted to decrease the
increasing CP error by generating the desired ZMP up to the
ZMP constraint. However, the CP error could not be reduced
due to the significant external force. At approximately 6 s,
footstep adjustment of -7 cm (blue line), ∆fy,1, was generated
to relax the ZMP constraint, and 15 Nm of the desired
centroidal moment (yellow line), τdesx , was also generated
to reduce the CP error. Based on the generated ∆fy,1, the
stepping controller adjusted the foot trajectory (magenta and
cyan line) and reduced the step time (orange line), T , to allow
for stepping at approximately 6.1 s. After the stepping, the
desired ZMP and the centroidal moment were continuously
generated up to their respective limits until approximately
7.2 s to overcome disturbances. Subsequently, continuous
CP control using each strategy reduced the CP error from

approximately -28 cm initially, gradually decreasing until the
robot was able to maintain balance against external forces.

C. Simulation to Validate Robustness of the Proposed Method
on Uneven Terrain

Although the robustness of the proposed method was val-
idated against external forces, it is imperative to ensure its
ability to maintain balance against disturbances arising from
uneven terrain. Therefore, in this simulation, the robot walks
over objects placed on the ground, demonstrating the perfor-
mance of the algorithm on uneven terrain. Four objects, each
with a length and width of 5 cm, were positioned in front of
the robot with a distance of 30 cm between them. To make
the robot step on each object alternately, two objects were
placed on the left and two on the right with respect to the
robot’s center. The thickness of the objects ranged from 1.0
cm to 2.5 cm with an increase of 0.5 cm. The robot walked
a distance of 2.0 m with a step length of 0.1 m, and the step
duration consisted of 0.6 s of SSP and 0.3 s of DSP. In the
second row of Fig. 6, the left y-axis of the graph represents
the displacements of variables related to ZMP. Conversely, the
right y-axis, indicated by the purple color, displays the CP
error, ξerr, and footstep adjustment, ∆f1. This arrangement is
intended to enhance the visibility of variations in CP error and
footstep adjustment, enabling a more detailed analysis of their
changes.
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Fig. 6 shows simulation snapshots and the corresponding
output data. The snapshots provide a reaction of the robot to
each object before and after stepping on it, from the beginning
of the DSP to the end of the next DSP. In the snapshots,
the robot was able to navigate forward while stepping on
the objects in its path. The first and second objects were
overcome using ZMP and stepping control (ankle and stepping
strategies). For the third and fourth objects, CAM control (hip
strategy) was additionally employed to navigate past them.
The analysis of this process is explained based on the data
presented in the graphs.

First, at approximately 7.2 s, which is the start of the 6th
DSP, the robot steps on the object with a thickness of 1.0
cm diagonally in the y-direction, causing external disturbance.
To reduce the CP error (green line) from the disturbance,
the desired ZMP (red line) was first generated in the x-
and y-directions, and a footstep adjustment ∆fy,1 of -2.9 cm
(blue line) was generated at approximately 8.1 s. Due to the
narrower range of ZMP constraint in the y-direction compared
to the x-direction, ∆fy,1 was generated somewhat faster. As
a result, the swing foot position (cyan and magenta line) was
adjusted with the ZMP control, allowing the robot to overcome
the external disturbance.

At the start of the 9th DSP, approximately 9.9 s, the robot
encountered the 1.5 cm object. To overcome the resulting
disturbance, the CP–MPC generated ∆fy,1 of 6.5 cm at
approximately 10.6 s. Compared to the first disturbance, the
robot overcame disturbances by employing a more proactive
stepping control in the y-direction, including adjusting the
footstep and step time (orange line), T .

Next, at the start of the 12th DSP, approximately 12.6 s,
the robot stepped on the 2 cm object. To alleviate the CP
errors caused by object disturbance, the desired ZMP was
generated up to the constraint in both the x- and y-directions.
Additionally, ∆fy,1 of -7.6 cm was generated at approximately
13.1 s and ∆fx,1 of -12.2 cm was also generated at 13.4 s.
Notably, the large CP error in the y-direction led to a maximal
x-axis centroidal moment, τdesx , of 15 Nm. In conclusion,
the robot was able to overcome disturbances by adjusting
step position and time to a greater extent than in the second
stepping case, while also implementing centroidal moment
control.

Finally, at the start of the 15th DSP, approximately 15.2
s, the robot stepped on the thickest object of 2.5 cm among
the objects. The desired ZMP in the x- and y-direction were
generated in two steps up to each ZMP constraint compared
to the third balancing case. ∆fy,1 was generated up to 8.6
cm at approximately 15.7 s, and ∆fx,1 was generated up to
-11.9 cm at approximately 16.1 s. The centroidal moment in
the x-direction was also generated up to the constraint due to
a significant disturbance. With footstep position adjustment,
step time was also reduced by up to 0.7 s, allowing the robot
to overcome the disturbance. On the other hand, only a small
amount of the centroidal moment, τdesy , in the y-direction was
generated.

In conclusion, this simulation showed that appropriate
strategies were executed to mitigate disturbances of various
magnitudes caused by uneven terrain, and the graph data

Fig. 7: Comparisons of the maximum endurable impulse
between combinations of strategies.

provided clear evidence of the effectiveness of these strategies.

D. Simulation to Evaluate Balancing Performance based on
the Different Combinations of Each Balance Strategy

Comparative simulations were conducted to evaluate how
the balancing performance varies based on different combi-
nations of balancing strategies in response to disturbances.
Presented below is a summary of the implementation methods
employed to combine each strategy.

• Method 2) is composed of a combination of ZMP control
and stepping control (footstep position and step time
adjustment), excluding the CAM control. To achieve this,
the prediction model of CP–MPC in (6) was modified to
include LIPM dynamics but not LIPFM, and all terms
related to the centroidal moment, τ, in (10) and (11) were
excluded. All other controllers were kept the same.

• Method 3) has the same structure as method 2), but it
does not consider step time adjustment in the stepping
controller. Therefore, only the next footstep position, f ,
is adjusted in the stepping controller without modifying
the step time, T .

• Method 4) is a combination of ZMP control and CAM
control, excluding the stepping control. To achieve this,
all terms related to ∆F in (10) and (11) were excluded,
and the stepping controller was also excluded.

• Method 5) only performs ZMP control. All terms related
to τ and ∆F in (10) and (11) were excluded, as well as
the stepping controller.

In order to analyze the robustness of each method against
disturbances from various directions, the maximum external
impulse that the robot could withstand was analyzed by
varying the direction of the external force in increments of
30 deg. Similar to previous simulations, an external force was
applied to the pelvis of the robot for 0.2 s while the robot
walked in place. In Fig. 7, the maximum external impulse
that the robot can withstand is represented by the form of
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a polygon, which is referred to as the disturbance polygon
(DP) in this paper. The direction of the external force vector
starts from the robot and points outward, and a force of 90 deg
represents a force that is directed from back to front (+x-axis).

As expected, method 5), which only tracks the desired
ZMP, exhibited the lowest balancing performance compared
to other methods. This is because CP control is achieved
only through ZMP control, and ZMP control performance
is limited within the support polygon. Method 4), which
tracks the desired ZMP and centroidal moment, extended
the range of the control input that controls CP beyond the
support polygon compared to method 5), resulting in a 9.9
% increase in the average maximum external impulses that
the robot can withstand. Method 3), which tracks the desired
ZMP and adjusts the footstep position, significantly expands
the maximum endurable impulses compared to 4) and 5)
at 0, 30, and 330 degrees, where the support area can be
greatly widened through stepping. In cases where the stepping
distance is limited due to the self-collision, i.e. near 180
degrees, the contribution of the footstep position adjustment to
the robustness decreases compared to the other directions and
becomes similar to that of method 4). In method 2), which
simultaneously tracks the desired ZMP and adjusts footstep
position and step time, it was possible to adjust the footstep
position more quickly in response to disturbances compared to
method 3). In particular, this led to a noticeable improvement
in balancing performance, especially at 0, 30, and 330 degrees.
Additionally, the average maximum external impulses that the
robot could withstand increased by approximately 16.3 %
compared to method 3). Our proposed method, which com-
bines all strategies, exhibited superior balancing performance
across all directions compared to other sub-combinations. This
is because all limbs of the robot (supporting leg, upper body,
and swing leg) participated in CP control in parallel through
three balance strategies (ankle, hip, and stepping strategies).
As a result, our method led to an increase of 19.0 %, 36.2 %,
55.7 %, and 71.1 % in the average maximum external impulses
that the robot could withstand compared to methods 2), 3), 4),
and 5), respectively.

E. Simulation to Validate the Effectiveness of the Variable
Weighting Method

In order to evaluate the effectiveness of the proposed
variable weighting method in the presence of disturbance, a
comparative simulation with the constant weighting method
was performed. The simulation setup was identical to that in
Sec VI-B, where an external force was applied to the robot’s
pelvis in the negative x-direction during walking in place. In
this simulation, only the effects of external forces in the x-
direction were analyzed, as the results in the y-direction were
found to be similar. Fig. 8 presents the results of comparing
the performance of the two methods. The first graph shows
the relationship between CP error and the magnitude of the
current delta ZMP, |∆zx|, indicating an increasing trend in
delta ZMP as the CP error increases. The delta ZMP refers
to the additional ZMP input needed to control the CP error,
which is calculated as the difference between the desired ZMP

Fig. 8: The impact of variable weight parameters on CAM
generation and resulting balancing performance.

and the reference ZMP, as explained in Section IV-C. The
second graph shows how the weighting parameter varies with
the series of the delta ZMP inputs, |∆Zx|, using a color-map.
The third and fourth graphs compare the centroidal moment
and CAM generated by each weighting method.

In the first graph of Fig. 8, both methods exhibit an increase
in CP error (green and black dotted line) when the external
force is applied to the robot at approximately 5.9 s. As a result,
the magnitude of delta ZMP input (red and blue dotted line)
also increases. Note that the weighting parameters changes
according to N series of delta ZMP inputs, but the graph
depicts only the first element of delta ZMP inputs to show
the overall behavior with respect to CP error.

The second graph depicts the time sequence of N weighting
parameters based on the magnitude of N series of delta ZMP
inputs, |∆Zx|, over the time horizon (vertical axis). In the
variable weighting method, the graph appears white when no
disturbance is applied to the robot. However, as the delta
ZMP increases due to disturbances after approximately 6 s,
the weighting parameters of the CAM damping cost decrease,
causing the color-map to turn dark. In contrast, the constant
weighting method always has a constant weighting value
regardless of delta ZMP inputs.

As evident from the third and fourth graphs, the difference
between the two methods significantly impacts the generation
τdesy for disturbances. As a result, it directly affects the desired
CAM, hdes

y , which is generated by integrating τdesy . Although
the delta ZMP was almost the same (as shown in the graph
of the first row), using constant weighting method resulted
in the insufficient generation of CAM compared to variable
weighting method. This led to the robot falling over after
approximately 7.0 s when the constant weighting is used.

Similar to the simulation in VI-B, the performance of
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Fig. 9: Comparisons of the maximum endurable impulse
between variable and constant weighting method.

TABLE II: Analysis of CP offset errors and CP tracking errors
according to the selection of nominal CP offset, bnom.

RMS error [cm]Scenario Method
ξx ξy bx by

Constant velocity
assumption [26,30] 1.12 3.56 3.55 7.60(a) Forward and

backward walking Our approach 0.76 0.89 1.65 1.46
Constant velocity
assumption [26,30] 0.58 4.78 2.12 9.73

(b) Lateral walking Our approach 0.39 1.29 0.88 1.94

the variable weighting method was tested against various
directions of disturbances, and the results were illustrated in
Fig. 9. The use of the variable weighting method led to a 7.2
% increase in the average maximum external impulses that
the robot can withstand compared to the constant weighting
method.

F. Simulation to evaluate walking performance based on dif-
ferent parameter selections of the stepping controller

In this section, simulations were conducted to analyze the
impact of parameter selection in the stepping controller on
walking stability. Specifically, the CP tracking error, ξerr, and
CP offset error, berr, were analyzed according to the two
parameters (nominal CP offset, bnom, and CMP parameter,
Pssp). Fig. 10 illustrates the walking scenarios conducted in
this simulation. Fig. 10(a) represents forward and backward
walking with step length L, and in this case, the deviation of
the step width W is zero during walking. Fig. 10(b) represents
the lateral walking with step width deviation W , where the
default step width D is 20.5 cm. Additionally, in this case,
the step length L is zero during walking.

First, in order to analyze the effects of the nominal CP
offset, bnom, on walking stability, simulations were conducted
in two walking scenarios depicted in Fig. 10. For comparative
simulations, an analytical CP offset calculation method pro-
posed in [26], [30] was adopted. Here, both methods used
the CMP parameter, Pssp, calculated by (16). Table II shows
the root mean square (RMS) error of the CP offset and the
CP tracking when different nominal CP offsets are selected in

Fig. 10: The planned footstep placement used in the simulation
of Section VI-F (a) forward and backward walking at various
speeds in the x-direction. (b) lateral walking while the robot
doesn’t move in the x-direction.

TABLE III: Analysis of CP offset errors and CP tracking errors
according to the selection of CMP parameter, Pssp.

RMS error [cm]Scenario Method
ξx ξy bx by

Point foot assumption
[26,30,31] 0.96 1.22 1.93 2.04(a) Forward and

backward walking Our approach 0.76 0.89 1.65 1.46
Point foot assumption

[26,30,31] 0.56 1.56 0.96 2.79
(b) Lateral walking Our approach 0.39 1.29 0.88 1.94

each scenario. When adopting bnom calculated using (19) and
(20) proposed in [26], [30], substantial CP tracking errors and
CP offset errors were observed in both scenarios (a) and (b)
compared to our method. As mentioned in Section V-D, this
method assumes that both L in (19) and W in (20) remain
constant for the current and the next step. However, as shown
in Fig. 10, this assumption is violated in scenario (a) where
L changes at each step, or in scenario (b) where W changes
at each step. As a result, unintended CP velocity is induced
at the beginning of each step, leading to a deterioration in
walking stability. This causes significant CP tracking errors
and CP offset errors during walking. When our method is
used, the CP offset is calculated based on (15) according to
the walking velocity command without the constant walking
velocity assumption. Consequently, the CP offset is controlled
to follow the walking velocity command, allowing the robot
to minimize CP tracking error and start the next step with a
small CP error, thereby maintaining walking stability.

Next, simulations were performed to analyze the impact of
CMP parameter, Pssp, on walking stability for both scenarios
(a) and (b). Here, our CP offset calculation method (15) was
used. For the comparison simulations, the CMP parameter
[26], [30], [31] that assumed the point foot was compared
with our method, and the results are presented in Table III. In
both scenarios (a) and (b), the point foot assumption resulted
in larger errors compared to our method. The reason is that
the point foot assumption fails to accurately reflect the CMP
position acting on a robot with large feet, thus ignoring the



14

causal relationship between the predicted CP end-of-step and
the CMP, which operates based on LIPFM dynamics. As
a result, the CP end-of-step is inaccurately predicted, and
CP offset control based on this CP end-of-step leads to a
deterioration of walking stability during walking. On the other
hand, our approach calculates the CMP parameter based on the
control inputs of CP–MPC in (16), which accurately reflects
the robot’s CMP compared to the point foot assumption,
enabling accurate prediction of CP end-of-step.

In conclusion, it is important to adopt appropriate parame-
ters for the stepping controller to enhance the overall stability
of walking.

G. Simulation to Compare Robustness against Disturbances
with QP-based CP controller [39]

In this section, simulations were conducted to compare the
robustness against disturbances between the proposed method
and state-of-the-art QP-based CP controller [39]. For the
comparative simulations, the algorithm proposed by [39] was
implemented in our walking control framework (see Fig. 2).
In the implemented algorithm, the QP-based CP controller
replaced our CP–MPC and stepping controller, while all other
controllers and planners, including the ZMP controller, CAM
controller, and walking pattern generator described in Section
III, remained unchanged.

The reasons for selecting the QP-based method [39] as a
suitable comparison for our method are the followings. First,
our method and the QP-based method are based on the same
CP dynamics of the LIPFM and integrate ankle, hip, and
stepping strategies that include step time optimization. Second,
the QP-based method is considered state-of-the-art research in
this field.

While the QP-based method only considers the robot’s CP
for the current step duration, our CP–MPC takes into account
not only the current states but also the future constraints and
future states of the robot. The QP formulation proposed by
[39] is defined as follows:

min
f ,γ,τ ,b

wf∥ferr∥2 + wγ(γerr)
2 +wτ∥τ +Kdh∥2

+wb∥berr∥2 (21)

s. t. ferr + berr − ξrefe−ωtγerr − (1− e−ωtγ
′
)
τerr
mg

= (ξerr −∆z)e−ωtγerr +∆z (22)

where the subscript, err, signifies the difference between the
optimization variables and the pre-designed nominal variables.
The delta ZMP, ∆z = [∆zx ∆zy], denotes the difference
between the desired ZMP for controlling the CP and the pre-
designed reference ZMP. The cost function (21) comprises the
step position error term, step time error term, damping term of
the CAM, and CP offset error term. The equality constraint in
(22) is derived from the error dynamics of the CP end-of-step
dynamics in LIPFM. Detailed derivation and explanations for
each equation are provided in [39].

The QP formulation in (21) and (22) addresses the ankle
strategy through delta ZMP, ∆z ∈ R2, the hip strategy through
centroidal moment, τ ∈ R2, and the stepping strategy through

Fig. 11: Comparisons of the maximum endurable impulse
during walking between the proposed method and QP-based
CP controller [39].

footstep position, f ∈ R2, and step time, γ. However, due to
the variable coupling between ∆z and γ, as well as between
γ and τ , the original equation of (22) resulted in non-linear
constraint. To address this issue in [39], ∆z is considered as
a constant using the pre-computed value from the instanta-
neous CP controller proposed in [40] without optimization.
Furthermore, to avoid variable coupling between τ and γ, a
constant γ′ was used, which corresponds to the γ from the
previous control cycle. In contrast, our approach optimizes
ZMP, centroidal moment, and footstep position simultaneously
using CP–MPC, and the step time is separately optimized in
the stepping controller without any constant assumptions.

Simulations were conducted to compare the robustness
of two algorithms against external forces. The robot was
applied to external forces during walking in place and forward
walking, and the maximum impulse that the robot could
withstand was analyzed using DP. The weighting parameter
in (21) was the same as that used in [39]. Fig. 11 shows the
DP obtained when using both methods. Overall, our method
exhibited more robust balancing performance, especially at
0, 30, and 330 degrees, compared to the QP-based method.
The overall difference in balancing performance may first be
attributed to the ankle strategy. In [39], the desired ZMP for
instantaneous CP control is calculated as follows,

zdes = zref +∆z

= zref − eω(T−t)

1− eω(T−t)
ξerr. (23)

However, in (23), since the CP control feedback gain is
determined based on the remaining step time (T − t), the
CP control performance cannot be increased as needed. Next,
as analyzed in Section VI-B, stepping control was the most
helpful in withstanding external forces at 0, 30, and 330
degrees. In our method, footstep position is adjusted based
on the ZMP constraint, while step time is adjusted based
on CP–MPC outputs, and is independent of the execution
order of each balancing strategy. However, in the QP-based
method, the ankle, hip, and stepping strategies are executed
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Fig. 12: Experimental results are presented for the robot’s response to external forces applied along both the negative x- and
y-directions, with snapshots and output data shown in (a) and (b) respectively.

sequentially according to the magnitude of the CP error, and
the stepping control is performed in the final stage. Therefore,
the response to disturbances through stepping control was
slower compared to our method. The start time of the stepping
control for each method is measured 10 times when the robot
was subjected to the maximum external impulse that our
method could withstand at 0, 30, and 330 degrees (in Fig.
11). Our method on average outpaced the QP-based method by
0.078 s, 0.086 s, and 0.084 s for each direction, respectively.
Considering the SSP time (0.6 s), this means that stepping
control in our method was performed 13%, 14.3%, and 14%
faster than the QP-based method, respectively. In conclusion,
when using our method compared to the QP-based method
[39], the average maximum external impulses that robot could
withstand increased by 21.0 % for walking in place and
26.1 % for forward walking. The video of these comparison
simulations can be found in the supplementary material.

H. Real Robot Experiment to Validate Robustness of the
Proposed Method under External Forces

Experiments were conducted where the robot was subjected
to external forces in both x- and y-directions during walking
in place, replicating the scenarios in the simulation presented

in Section VI-B. The external force was applied to the robot
directly by a human using a tool equipped with an F/T
sensor. The magnitude of the impulse applied to the robot
was measured by the F/T sensor on the tool. The step duration
includes an SSP of 0.6 s and a DSP of 0.3 s which is consistent
with the simulation setup. The control parameters used in
both the simulation and experiment are identical, except for
the constraints of the centroidal moment (as shown in Table.
I). The difference in centroidal moment constraints is due
to the conservative assignment of upper body joint position
and velocity limits in the real robot experiments compared
to the simulation. Consequently, this implies that if the low-
level control of the real robot is already adjusted to suit the
hardware, there is no need for tuning of control parameters
during sim-to-real implementation.

In the first experiment, the robot was subjected to an
external push of 46.8 Ns in the negative x-direction while in
the right foot support. The snapshots of the experiment and
the corresponding experimental data are shown in Fig. 12(a).
The snapshot provides a visual representation of how the robot
maintained its balance in response to the external force. In a
manner similar to the simulation presented in Section VI-B,
the robot successfully overcome the external force by combin-
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Fig. 13: Experimental results are presented for the robot’s forward walking while overcoming three unexpected objects, with
snapshots and output data provided.

ing CAM control utilizing the upper body, ZMP control using
the supporting leg, and back-steps control. At approximately
6.5 s, when the external force is applied to the robot, the CP
error (green line), ξerr,x, increases in the negative x-direction,
and the desired ZMP (red line), zdesx , is rapidly generated in
the direction to reduce the CP error in the CP–MPC. The
desired ZMP is then constrained by the ZMP constraint of -9
cm, and CP–MPC generates a footstep adjustment (blue line),
∆fx,1, with a peak value of approximately -14.4 cm to relax
the ZMP constraint at approximately 6.9 s. Additionally, the
desired centroidal moment (yellow line), τdesy , is generated
up to -7.0 Nm to further reduce the CP error at approximately
6.95 s. Despite these efforts, the robot was unable to overcome
the strong disturbance in a single step. As a result, the CP–
MPC continuously generated footstep adjustment to reduce
the CP error while the desired ZMP was generated up to the
constraint until approximately 7.9 s. In conclusion, a total
of two back-step controls (magenta and cyan lines) were
performed, involving a movement of approximately -18.6 cm,
along with step time optimization (orange line), T , and the
robot maintained its balance. In contrast, when the QP-based
method proposed in [39] was used in the experiment, despite
an external push of 38.7 Ns in the negative x-direction, the
CP of the robot could not be recovered and the robot lost its
balance.

In the following experiment, the robot was subjected to an
external push of 94.3 Ns in the negative y-direction during

left foot support. The corresponding experimental data and
snapshots are presented in Fig. 12(b). Similar to the pre-
vious experiment, the robot maintained its balance through
integrated control strategies, including ZMP control using
the supporting leg, CAM control using the upper body, and
stepping control. At approximately 7.5 s, the external force
caused significant perturbation to the robot’s CP, resulting in
an increase in CP error, ξerr,y , in the negative y-direction. To
reduce the CP error, the desired ZMP, zdesy , was generated up
to the ZMP constraint at approximately 7.7 s. The CP–MPC
then generated a footstep adjustment, ∆fy,1, of approximately
-7.4 cm and a maximum centroidal moment, τdesx , of 7 Nm.
Additionally, the stepping controller decreased the step time,
T , to 0.74 s. Subsequently, the desired ZMP was continuously
generated up to the ZMP constraint to reduce the CP error until
approximately 9 s. However, centroidal moment or footstep
adjustment was reduced after 8.1 s, and CP control was han-
dled mainly through desired ZMP control. Finally, the robot
maintained balance against external forces within two steps.
On the other hand, when using the QP-based method [39], the
robot could not withstand an external force of approximately
75.43 Ns and lost balance. Overall, the magnitude of external
impulses applied to the robot was similar to those in the
simulation, although it was hard to make them identical by
human.
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I. Real Robot Experiment to Validate Robustness of the Pro-
posed Method on Uneven Terrain

To validate the robustness of the proposed method against
disturbances caused by uneven terrain, a real robot experiment
was conducted where the robot walked over objects placed on
the ground. In a scenario similar to the simulation in Section
VI-C, three objects, each with a length of 15 cm and width
of 20 cm, were placed in front of the robot. The distance
between the first and second objects was 25 cm, and the
distance between the second and third objects was 40 cm. The
objects were placed alternately on the left and right sides of
the robot’s center. The thickness of the objects ranged from 1.5
cm to 2.5 cm in increments of 0.5 cm, similar to the scenario
in Section VI-C. The robot walked a distance of 1.3 m with
a step length of 0.1 m, and the walking duration consisted of
0.6 s of SSP and 0.3 s of DSP. In the second row of Fig.
13, the left y-axis represents the displacements of variables
associated with the ZMP. In contrast, the right y-axis, denoted
by the purple color, displays the CP error, ξerr, and footstep
adjustment, ∆f1.

Fig. 13 presents experimental snapshots and the correspond-
ing output data. The snapshots provide a reaction of the robot
to each object before and after stepping on it. While the
first object was overcome by ZMP control, both the second
and third objects were overcome through a combination of
stepping control and CAM control in addition to ZMP control.
Note that the robot does not step on each object just once,
but rather repeatedly steps on them at various positions and
angles, leading to continuous exposure to diverse external
disturbances.

Based on the data presented in the graph, the balancing
process can be explained. During forward walking, the robot
repeatedly steps on objects of heights 1.5 cm and 2.0 cm from
the start of the 5th DSP at approximately 6.3 s to the end of
the 9th DSP at 10.2 s. Throughout this period, the desired
ZMP (red line) in the x-direction, zdesx , was generated from
approximately 7.1 s to 9 s, up to the ZMP constraint. At
around 8 s, a negative x-direction footstep adjustment (blue
line), ∆fx,1, of 5.3 cm was generated. Additionally, a small
centroidal moment (yellow line), τdesy , of -0.4 Nm, was created
at approximately 7.5 s. In the y-direction, the desired ZMP,
zdesy , was generated up to the constraint from approximately
6.9 to 7.8 s, and a small footstep adjustment, ∆fy,1, of 2.4
cm was generated at approximately 7 s.

However, during walking on the 2 cm object after 10.2 s,
the robot experienced continuous disturbances such as contact
impacts and late landings, leading to instability in its walking.
To overcome this disturbance, starting from approximately
10.2 s, the desired ZMP in the y-direction began to be
generated up to the ZMP constraint, and the centroidal moment
(yellow line), τdesx , in the x-direction was also generated up
to 7 Nm at approximately 10.8 s. Additionally, based on the
generated ∆fy,1 of -3 cm at approximately 10.7 s, the stepping
controller adjusts the swing foot position (magenta and cyan
lines) while optimizing the step time (orange line), T . On the
other hand, to control the CP error in the x-direction, CP–
MPC primarily generates the desired ZMP, zdesx , with little

utilization of centroidal moment control, τdesy , or footstep
position control, ∆fx,1.

After successfully overcoming these disturbances, at ap-
proximately 12.0 s, which is the start of the 11th DSP, the robot
steps on the thickest object of 2.5 cm, causing a significant
disturbance to the robot. As a result, at approximately 13.6
s, the CP–MPC generates a maximum centroidal moment of
-7 Nm and approximately 7.3 cm of ∆fy,1 to overcome the
disturbance. Simultaneously, the stepping controller adjusts the
robot’s swing foot position to the left based on the generated
∆fy,1, while also modifying the step time, T , to approximately
0.8 s in response to significant disturbances. Eventually, the
robot maintains its balance. Similar to the results in Section
VI-C, disturbances to the robot were relatively larger in the
y-direction than in the x-direction. While the robot mainly
overcame the disturbances in the x-direction using ZMP con-
trol with long support foot length, in the y-direction, both
stepping and CAM control were actively used. When using the
QP-based method [39], however, the robot could not withstand
the disturbance from a 2.5 cm object and fell over.

VII. CONCLUSION

This paper presents a novel balance control framework for
humanoid robots to achieve robust balancing performance in
the presence of disturbances. The proposed framework utilizes
a linear MPC framework to drive three balance strategies,
namely ankle, hip, and stepping strategies, for CP tracking
control (referred to as CP–MPC). While several humanoid
balancing algorithms have been developed to implement the
three balance strategies, to the best of our knowledge, this
framework is the first MPC-based framework that realizes
the three strategies specifically for CP tracking control. The
proposed framework effectively calculates ZMP, CAM, and
footstep positions to achieve CP tracking control in the pres-
ence of disturbances.

In addition, a novel variable weighting method that adjusts
the MPC weighting parameters over the time horizon was
proposed and applied to the CAM damping control. This
method reduced the influence of damping action on CAM
control and demonstrated better balancing performance against
disturbances compared to the conventional constant weighting
method.

Next, a hierarchical structure of CP–MPC and a stepping
controller is proposed, enabling step time optimization based
on CP–MPC variables. Specifically, the stepping controller
adjusts the step time while closely following the footstep
adjustments planned by CP–MPC to control the CP offset.
The suitability of the parameter selection method used in the
stepping controller is validated in comparison to the methods
proposed in previous studies [26], [30], [31].

Finally, the balancing performance of the proposed method
has been validated through simulations and real robot experi-
ments under various scenarios with disturbances. The robot
can traverse uneven terrain and overcome external forces.
Notably, the same control parameters were used for both sim-
ulations and experiments, resulting in minimal effort for sim-
to-real implementation. Furthermore, the superior balancing
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performance of the proposed method was experimentally ver-
ified, compared with state-of-the-art QP-based CP controller
that utilize ankle, hip, and stepping strategies [39].

REFERENCES

[1] L. M. Nashner and G. McCollum, “The organization of human postural
movements: a formal basis and experimental synthesis,” Behavioral and
brain sciences, vol. 8, no. 1, pp. 135–150, 1985.

[2] D. A. Winter, “Human balance and posture control during standing and
walking,” Gait & posture, vol. 3, no. 4, pp. 193–214, 1995.

[3] B. E. Maki and W. E. McIlroy, “The role of limb movements in
maintaining upright stance: the “change-in-support” strategy,” Physical
therapy, vol. 77, no. 5, pp. 488–507, 1997.

[4] K. Barin, “Evaluation of a generalized model of human postural dynam-
ics and control in the sagittal plane,” Biological cybernetics, vol. 61,
no. 1, pp. 37–50, 1989.

[5] A. D. Kuo and F. E. Zajac, “Human standing posture: multi-joint
movement strategies based on biomechanical constraints,” Progress in
brain research, vol. 97, pp. 349–358, 1993.

[6] S. Park, F. B. Horak, and A. D. Kuo, “Postural feedback responses scale
with biomechanical constraints in human standing,” Experimental brain
research, vol. 154, no. 4, pp. 417–427, 2004.

[7] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d
linear inverted pendulum mode: A simple modeling for a biped walking
pattern generation,” in Proceedings 2001 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Expanding the Societal Role
of Robotics in the the Next Millennium (Cat. No. 01CH37180), vol. 1.
IEEE, 2001, pp. 239–246.

[8] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and
H. Hirukawa, “Biped walking pattern generation by a simple three-
dimensional inverted pendulum model,” Advanced Robotics, vol. 17,
no. 2, pp. 131–147, 2003.
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